

RECAST: Training Workshop

Github Repository & Data Access

Descarga del repositorio: https://github.com/fcorowe/dfd4mobility

Visita https://zenodo.org/record/8160319

Ver instrucciones detalladas en un correo electrónico enviado por Carmen el 18/07/2023

Overview: Digital Footprint Data

Structure

Introduction to human mobility
& digital footprint data

2. Opportunities of digital footprint data

3. Challenges of digital footprint data

Human Mobility

Digital Footprint Data?

Internet

Social media

Commercial & transactional

Sensor

Imagery

Data for Mobility

GPS ~ 5-20m ~ 10-25min

Œ

Smart card

location

Bluetooth ~ 1-10m

Warning **Not** collected for research purposes

"Although "big data" and, more recently, "big code" may have captured the limeligh theory is invaluable and should not be disregarded" (Franklin 2023: 178)

Opportunities

High resolution

Geographical and temporal granularity

Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc

To travel or not to travel: 'Weather' is the question. Modelling the (CrossMark effect of local weather conditions on bus ridership

Sui Tao^{a,*}, Jonathan Corcoran^b, Francisco Rowe^c, Mark Hickman^d

^a Institute of Future Cities, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong ^b School of Earth and Environmental Sciences, The University of Queensland, 4072, Australia ^c Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK ^d School of Civil Engineering, The University Queensland, 4072, Australia

ARTICLE INFO

Keywords: Public transport Weather Time-series modelling Travel behaviou

ABSTRACT

While the influence of weather on public transport performance and ridership has been the topic for some research, the real-time response of transit usage to variations in weather conditions is yet to be fully understood. This paper redresses this gap by modelling the effect that local weather conditions exert on hourly bus ridership in sub-tropical Brisbane, Australia. Drawing on a transit smart card data set and detailed weather measurements, a suite of time-series regression models are computed to capture the concurrent and lagged effects that weather conditions exert on bus ridership. Our findings highlight that changes in particularly temperature and rainfall were found to induce significant hour-to-hour changes in bus ridership, with such effects varying markedly across both a 24 h period and the transit network. These results are important for public transport service operations in their capacity to inform timely responses to real-time changes in passengers' travel demand induced by the onset of particular weather conditions.

b

Fig. 6. Weekday hourly ridership.

Greater geographical coverage

Assessing stay-at-home at a global scale

Near real-time availability

Measuring population movement during COVID-19

Received: 24 February 2022	Revised: 1 May 2022	Accepted: 3 May 2022	(a)
DOI: 10.1002/psp.2578			100

RESEARCH ARTICLE

WILEY

Understanding patterns of internal migration during the COVID-19 pandemic in Spain

Received: 31 March 2022 Accepted: 17 November 2022 DOI: 10.1002/psp.2637

RESEARCH ARTICLE

WILEY

Urban exodus? Understanding human mobility in Britain during the COVID-19 pandemic using Meta-Facebook data

Francisco Rowe¹ | Alessia Calafiore² | Daniel Arribas-Bel^{1,3} Krasen Samardzhiev¹ | Martin Fleischmann¹

¹Department of Geography and Planning, University of Liverpool, Liverpool, UK ²Edinburgh College of Art, University of Edinburgh, Edinburgh, Scotland, UK ³The Alan Turing Institute, British Library, London, England, UK

Correspondence Francisco Rowe, Department of Geography and Planning, School of Environmental Sciences, Roxby Bldg, 74 Bedford St, Liverpool, L69 7ZT, UK, Email: F.Rowe-Gonzale

Funding information Engineering and Physical Sciences Research Council; Alan Turing Institute

Abstract

Existing empirical work has focused on assessing the effectiveness of nonpharmaceutical interventions on human mobility to contain the spread of COVID-19. Less is known about the ways in which the COVID-19 pandemic has reshaped the spatial patterns of population movement within countries. Anecdotal evidence of an urban exodus from large cities to rural areas emerged during early phases of the pandemic across western societies. Yet, these claims have not been empirically assessed. Traditional data sources, such as censuses offer coarse temporal frequency to analyse population movement over infrequent time intervals. Drawing on a data set of 21 million observations from Meta-Facebook users, we aim to analyse the extent and evolution of changes in the spatial patterns of population movement across the rural-urban continuum in Britain over an 18-month period from March 2020 to August 2021. Our findings show an overall and sustained decline in population movement during periods of high stringency measures, with the most densely populated areas reporting the largest reductions. During these periods, we also find evidence of higher-than-average mobility from high-density population areas to lowdensity areas, lending some support to claims of large-scale population movements from large cities. Yet, we show that these trends were temporary. Overall mobility levels trended back to precoronavirus levels after the easing of nonpharmaceutical interventions. Following these interventions, we found a reduction in movement to low-density areas and a rise in mobility to high-density agglomerations. Overall, these findings reveal that while COVID-19 generated shock waves leading to temporary changes in the patterns of population movement in Britain, the resulting vibrations have not significantly reshaped the prevalent structures in the national pattern of population ate level

> See how your community is moving around differently due to COVID-19

Timeline First lockdown Partial re-opening Tier system & Third lockdown Re-opening

∉Maps

Mobility Trends Reports

Learn about COVID-19 mobility trends. Reports are published daily and reflect requests for directions in Apple Maps. Privacy is one of our core values, so Maps does not associate your data with your Apple ID and Apple does not keep a history of where you have bee

Near real-time availability

Measuring climate-induced population displacement

Regional Studies

Association

REGIONAL STUDIES, REGIONAL SCIENCE 2022, VOL. 9, NO. 1, 665–668 https://doi.org/10.1080/21681376.2022.2135458

RSA

Routledge

Date: 2022-08-13

Using digital footprint data to monitor human mobility and support rapid humanitarian responses

Francisco Rowe 💿

REGIONAL GRAPHIC

ABSTRACT

Global warming is increasing the frequency of extreme weather events leading to an increased risk of largescale population displacements. Since June 2022, Pakistan has recorded destructive flash flooding resulting from melting glaciers and torrential monsoon rainfall. Emergency responses have documented flood-related deaths, injuries and damaged infrastructure – less is known about population displacements resulting from recent floods. Information about these populations and mobility is critical to ensure the appropriate delivery of humanitarian assistance where it is most needed. Lack of granular spatial data in real time has been a key barrier. This article uses digital footprint data from Meta Facebook to identify the patterns of population displacement in Pakistan in near-real time.

ARTICLE HISTORY Received 28 September 2022; Accepted 3 October 2022

KEYWORDS

digital footprint data; human mobility; population displacement; flooding; Pakistan; geographical data science

Global warming is increasing the frequency of extreme weather events, natural disasters and large-scale population displacements. Pakistan is a current example of such events. Since June 2022, Pakistan has suffered destructive flash flooding. As of 3 September 2022, a third of the country was estimated to be underwater (Scarr et al., 2022). Pakistan has the largest number of glaciers outside the polar regions and higher temperatures have led to excess water from melting ice in the Himalayas. Sudden outbursts of melting glacier water coupled with torrential monsoon rainfall and long-term deforestation have thus contributed to landslides, floods and the overflowing of the Indus River, which stretches 2880 km across Pakistan from north to south. Since June 2022, 33 million people are estimated to have been affected, over 1500 killed and over 6000 injured as a result of damaged or collapsing housing and public infrastructure (Scarr et al., 2022). The south-eastern province of Sindh is the worst affected area (Scarr et al., 2022).

Population density ('000)

Figure 2. (a) Population density; and (b) human mobility flows on 15 August. Sources: (a) Global human settlement layer; and (b) Meta Facebook Data for Good.

Near real-time availability

Measuring conflict-induced population displacement

Sensing population displacement from Ukraine using Facebook data: Identifying potential settlement areas within host countries

Miguel González-Leonardo Centre for Demographic Urban and Environmental Studies, El Colegio de México, Mexico International Institute for Applied Systems Analysis, Wittgenstein Centre, Austria

Ruth Neville Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool, UK

Sofía Gil-Clavel Faculty of Technology, Policy, and Management, TU Delft, The Netherlands Laboratory of Digital and Computational Demography, Max Planck Institute for Demographic Research, Germany

Francisco Rowe* Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool, UK

Abstract: The escalation of conflict in Ukraine has triggered the largest refugee crisis in Europe since WWII. As of mid-April 2023, over 8.2 million people have fled Ukraine. Largescale efforts have been made to identify the major receiving countries. However, less is known about the sub-national areas within host countries where refugees have migrated. Identifying these areas is key for the appropriate allocation of humanitarian aid. By combining digital Facebook API data and traditional data from Eurostat, this paper aims to identify and characterise potential settlement areas of Ukrainians across the main destination countries in Europe. We identify high concentrations of Ukrainians in urban areas with a pre-existing diaspora and tight labour market conditions across southern, northern-west and central Poland and the city of Prague in Czech Republic. We also find potential settlements in key urban agglomerations with a moderate diaspora and high levels of unemployment in Spain. Only in Romania, refugees seem to have settled in rural areas which show a moderate diaspora but low levels of unemployment. Potential settlement areas in Germany, Italy and the United Kingdom are spread across the country. Surprisingly, we do not identify potential settlement areas in bordering regions with Ukraine within neighbouring countries, suggesting that refugees may have used them only as transit points. Our findings point out that different packages of humanitarian assistance may be needed according to the number of refugees and the characteristics of settlement areas.

Kirovohradska

Challenges

Epistemology

Strengthening interdisciplinary collaborations

Enriching existing theories

Embracing datadriven thinking

- 1. Dynamic perspective
- 2. Focusing on distribution extremes

Data

Accessibility & discoverability

Variable standards in who & how

Integration & interoperability

Unrelated digital data environments

Spatial, social and demographic **biases**

Urban, educated, wealthy, young & middle-age individuals

Source: Schlosser, Sekara Brockmann and Garcia-Herranz (2021).

Methodology

Adoption of data science & ML/AI

Lack of standard practice

Data engineering & validation

Generalisation of observed patterns

Re-weighting /resampling sp. post-stratification

Infusing socio-economic & demographic attributes

device_id	latitude	longitude	timestamp
488bb45a-fbd4-458e	48.8	30.2	1643674140
76549c5b-56ab-4e1	51.5	31.1	1643674140
910db600-1f54-4bfd	47.1	37.6	1643674140
9f7a8f26-bbbc-4725	50.5	30.2	1643674140
2175e67e-a541-4acf	47.7	35.6	1643674140

Source: Oliver, Lepri and Sterly et al. (2020)

Ethics & Privacy

Anonymisation

Privacy vs Accuracy

Barriers to replicability & reproducibility

Source: US Census Bureau 2022

Conclusions

Final Remarks (I)

 Digital footprint data offer opportunities to enhance our understanding of human mobility & migration and improve transport, navigation systems, pandemic responses & urban spaces.

Yet...

• Key epistemological, ethical, data and methodological challenges exist and need to be addressed in order to unleash the opportunities offered by digital footprint data

Final Remarks (II)

- Protocols for ensuring FAIR data & generating anonymised & synthetic data
- Trusted research digital environments
- Frameworks for assessing & correcting data generation & usage biases
- Repository of standard tools & practices for data engineering & validation
- Expanding & developing new dynamic theories

Overview: Meta-Facebook Mobility Data

Data for Good

Access to privacy-preserving data for partners to tackle social problems

- Data on human mobility during crisis
- Two datasets: Facebook Population Movements

Facebook anonymises and aggregates data to preserve users' privacy.

Source: Rowe (2022).

Population

<mark>Who</mark>?

Number of Facebook users (mobile app users w/ location services device setting on)

Spatial resolution:

Administration areas Microsoft Bing Tiles - 2.5-6 Km2

Near real-time - Time window: 00:00, 8:00 and 16:00 (Pacific Time)

The location where users **spent most time** within each 8-hour window

Period covering the entire event & baseline period

No information for units w/ less than 10 obs.

Datasets are discontinued after 90 days after the last data update

Boliva Dengue Fever Outbreak Feb 27 2023

Updated 28 may 2023 • 27 feb 2023 – 28 may 2023 Facebook Population During Crisis • Bolivia

Facebook Population During Crisis shows the number of Facebook users observed in a location following a crisis compared to a precrisis baseline period. It can help responders identify areas that are heavily impacted by a disaster, analyze how populations are reacting and where they go when they evacuate, and make strategic decisions about how to position services or supplies.

Mapa Acerca de Documentación Descargar Files

Turkiye Turkey Earthquake Full Country Version Feb 8 2023

Updated 9 may 2023 • 5 feb 2023 – 9 may 2023 Facebook Population During Crisis • Turkey

Facebook Population During Crisis shows the number of Facebook users observed in a location following a crisis compared to a precrisis baseline period. It can help responders identify areas that are heavily impacted by a disaster, analyze how populations are reacting and where they go when they evacuate, and make strategic decisions about how to position services or supplies.

Mapa Acerca de Documentación Descargar Files

The Avalanche in Nathu La, Sikkim, India

Updated 18 abr 2023 • 4 abr 2023 – 18 abr 2023 Facebook Population During Crisis • India

Facebook Population During Crisis shows the number of Facebook users observed in a location following a crisis compared to a precrisis baseline period. It can help responders identify areas that are heavily impacted by a disaster, analyze how populations are reacting and where they go when they evacuate, and make strategic decisions about how to position services or supplies.

Mapa Acerca de Documentación Descargar Files

The Tornadoes in Central Indiana, US

Updated 14 abr 2023 • 1 abr 2023 – 14 abr 2023 Facebook Population During Crisis • United States

Facebook Population During Crisis shows the number of Facebook users observed in a location following a crisis compared to a precrisis baseline period. It can help responders identify areas that are heavily impacted by a disaster, analyze how populations are reacting and where they go when they evacuate, and make strategic decisions about how to position services or supplies.

Mapa Acerca de Documentación Descargar Files

Expiring soon

The Flooding Across Southern Bahia, Brazil

Updated 8 may 2023 • 25 abr 2023 – 8 may 2023 Facebook Population During Crisis • Brazil

Facebook Population During Crisis shows the number of Facebook users observed in a location following a crisis compared to a precrisis baseline period. It can help responders identify areas that are heavily impacted by a disaster, analyze how populations are reacting and where they go when they evacuate, and make strategic decisions about how to position services or supplies.

Mapa Acerca de Documentación Descargar Files

The Tornadoes in Central Oklahoma, US

Updated 3 may 2023 • 20 abr 2023 – 3 may 2023 Facebook Population During Crisis • United States

Facebook Population During Crisis shows the number of Facebook users observed in a location following a crisis compared to a precrisis baseline period. It can help responders identify areas that are heavily impacted by a disaster, analyze how populations are reacting and where they go when they evacuate, and make strategic decisions about how to position services or supplies.

Mapa Acerca de Documentación Descargar Files

	dfd4mobility - main - RStudio												
📩 - 👔 🚭 - 📄 🛃 📥 🍌 Go to file/function 🛛 📅 - 📰 - Addins -													
	_quarto.ymi	IX pop⇒	×										
		† Ion †	auadkay 🗘	country 🗘	date time 🗘	n hasalina 🍦	n crisis 🍦	n difference 🗘	density baseline 🗘	density crisis 🗘	nercent change	clipped z score	B + Clobal Environment +
1	-28 3430	6 -67 19238	21030202001		2020-03-25	11 29685	10 68405	-6 119026e-01	4 453201e-06	4 2445260-06	_4 976091706		Data
2	-30 2590	6 -66 48926	21030202001		2020-03-25	11.58006	11 38284	-1.972289e-01	4 564843e-06	4 5217570-06	-1 567788923	-0 450764292	Dop 37486 obs. of 1
3	-40 4803	7 -67 28027	21030220301	AR	2020-03-25	22 31626	24 42576	2 109498e+00	8 797036e-06	9 702973e-06	9 047322458	1 166960574	
4	-32.7318	3 -68.24707	21023111213	AR	2020-03-25	14.88454	16.88733	2.002790e+00	5.867464e-06	6.708383e-06	12.608419655	1.842683658	
5	-27.4887	7 -65.96191	21030201020	AR	2020-03-25	19.60774	12.73290	-6.874848e+00	7.729342e-06	5.058060e-06	-33.360505521	-0.980456258	
6	-33.3947	5 -66.57715	21032002103	AR	2020-03-25	12.43535	11.51959	-9.157626e-01	4.901997e-06	4.576082e-06	-6.816065882	-1.074517795	
7	-29.3438	7 -67.45605	21030202220	AR	2020-03-25	89.40163	93.57898	4.177352e+00	3.524198e-05	3.717364e-05	4.620880745	1.193665462	
8	-51.5907	1 -72.20215	21203120323	AR	2020-03-25	414.59303	467.81802	5.322499e+01	1.634319e-04	1.858376e-04	12.806998282	2.463559002	
9	-40.68063	3 -71.49902	21023323203	AR	2020-03-25	22.64828	13.99706	-8.651217e+00	8.927915e-06	5.560240e-06	-36.582865976	-3.220668091	
10	-30.0310	5 -68.68652	21021331023	AR	2020-03-25	10.07549	10.17234	9.684612e-02	3.971744e-06	4.040895e-06	0.874418020	0.090174588	
11	-31.8402	3 -68.24707	21021333233	AR	2020-03-25	91.07699	93.52015	2.443166e+00	3.590240e-05	3.715027e-05	2.653394581	0.473286885	Files Plots Packages Help
12	-51.4813	7 -69.12598	21203130330	AR	2020-03-25	14.01308	15.14241	1.129329e+00	5.523934e-06	6.015223e-06	7.522302213	1.712587171	🖆 🚽 - 😫 📭 🌞 - 🖸 C
13	-33.3947	5 -68.95020	21023112113	AR	2020-03-25	41.65573	40.35153	-1.304195e+00	1.642062e-05	1.602938e-05	-3.057490265	-0.493763021	📃 > data > fb > population_grid 🔋
14	-38.92522	2 -68.15918	21023331100	AR	2020-03-25	5096.74208	5409.56259	3.128205e+02	2.009128e-03	2.148913e-03	6.136452329	2.132952587	A Name
15	-40.0780	6 -71.23535	21023323012	AR	2020-03-25	167.92615	138.24690	-2.967925e+01	6.619622e-05	5.491767e-05	-17.569364160	-2.444056434	t
16	-41.34382	2 -68.68652	21201111021	AR	2020-03-25	12.49185	12.86982	3.779727e-01	4.924266e-06	5.112451e-06	2.801489772	0.172683482	2020_03_pop.rds
17	-30.3349	5 -68.77441	21021331202	AR	2020-03-25	65.24864	64.89581	-3.528264e-01	2.572091e-05	2.577944e-05	-0.532579121	-0.088567831	2020_04_pop.rds
18	-33.1743	3 -68.42285	21023113010	AR	2020-03-25	1274.39029	1302.40358	2.801329e+01	5.023626e-04	5.173713e-04	2.196448327	0.758965809	2020_05_pop.rds
19	-28.8061	7 -67.01660	21030202032	AR	2020-03-25	20.60255	21.48991	8.873645e-01	8.121491e-06	8.536726e-06	4.107684758	0.581436673	2020_06_pop.rds
20	-29.3438	7 -67.63184	21021313331	AR	2020-03-25	94.47844	102.17025	7.691807e+00	3.724325e-05	4.058646e-05	8.056066436	1.203601131	2020_07_pop.rds
21	-27.4887	7 -66.22559	21030200131	AR	2020-03-25	30.04649	27.54645	-2.500038e+00	1.184428e-05	1.094265e-05	-8.052562531	-0.790921665	
22	-53.7746	8 -67.80762	21203313310	AR	2020-03-25	744.89443	844.00718	9.911275e+01	2.936362e-04	3.352763e-04	13.287772118	1.753375632	2020_09_pop.rds
23	-46.5890	6 -71.05957	21201303211	AR	2020-03-25	28.24359	30.99641	2.752817e+00	1.113358e-05	1.231312e-05	9.413403232	1.722454450	2020_10_pop.rds
24	-31.98943	3 -68.33496	21023111011	AR	2020-03-25	50.97665	55.63972	4.663070e+00	2.009492e-05	2.210251e-05	8.971470041	3.597761895	2020_11_pop.rds
25	-33.10074	4 -69.03809	21023110333	AR	2020-03-25	177.90497	169.44916	-8.455816e+00	7.012986e-05	6.731256e-05	-4.726428657	-0.760884130	2020_12_pop.rds
26	-26.6278	1 -66.22559	21030022313	AR	2020-03-25	12.30690	11.41608	-8.908164e-01	4.851361e-06	4.534965e-06	-6.694394279	-0.941107565	2021 02 pop.rds
27	-33.02708	8 -68.33496	21023111233	AR	2020-03-25	202.83372	213.98650	1.115278e+01	7.995673e-05	8.500473e-05	5.471508841	1.441755596	2021 03 pop.rds
Show	wing 1 to 27	7 of 37,486 ent	ries, 14 total co	lumns									■ 2021_04_pop.rds
Cor	nsole Teri	minal × Bac	kground Jobs $ imes$										2021_05_pop.rds
	R 4.2.2	~/Dropbox/Fi	rancisco/Researd	ch/grants/202	2/recast/celade	_workshop/trainir	ıg-workshop/gi	ithub/dfd4mobility	u/ 🔿			4	2021_06_pop.rds
Ri	s a colla	aborative pr	oject with r	many contri	butors.								2021_07_pop.rds
Тур	e 'contri	ibutors()' f	for more info	ormation ar	nd								🔲 🖬 2021 08 pop.rds

The Tornado in Moss Point, Mississippi, US

Updated 3 jul 2023 • 20 jun 2023 – 3 jul 2023 Movement Between Places During Crisis • United States

Movement Between Places During Crisis shows how many Facebook users moved from one area to another and if this movement is more or less than a normal day before a crisis or event.

Acerca de Documentación Descargar Files

Mayon Volcano Eruption Philippines 20 June 2023

Updated 3 jul 2023 • 20 jun 2023 – 3 jul 2023 Movement Between Places During Crisis • Philippines

Movement Between Places During Crisis shows how many Facebook users moved from one area to another and if this movement is more or less than a normal day before a crisis or event.

Acerca de Documentación Descargar Files

New

New

The Wildfires in Quebec Province, Canada

Updated 20 jun 2023 • 8 jun 2023 – 20 jun 2023 Movement Between Places During Crisis • Canada

Movement Between Places During Crisis shows how many Facebook users moved from one area to another and if this movement is more or less than a normal day before a crisis or event.

Acerca de Documentación Descargar Files

Nairobi Flooding Study June 8 2023

Updated 5 jul 2023 • 8 jun 2023 – 5 jul 2023 Movement Between Places During Crisis • Kenya

Movement Between Places During Crisis shows how many Facebook users moved from one area to another and if this movement is more or less than a normal day before a crisis or event.

Acerca de Documentación Descargar Files

ofd4mobility - main - RStudio												
*2 • 1 📷 🚭 • 1 🔚 📑 📥 🍌 Go to file/function 👼 • 📰 • Addins •												
mov ×												
🗕 👝 д 🔻 Filter										Q		
eometry ÷	date_time 🗘	start_polygon_id 🗘	start_polygon_name 🗘	end_polygon_id 🗘	end_polygon_name 🗘	length_km 🗘	tile_size 🗘	country	level [‡]	n_crisis [‡] n	_baseline	
INESTRING (-72.685546875 -41.83679436036388,	2020-03-23 08:00:00	61151	Hualaihué	61151	Hualaihué	0.00000	11	CL	LEVEL4	100	83.(
INESTRING (-71.982421875 -36.66838662873227,	2020-03-23 08:00:00	61070	Chillán	61088	San Nicolás	22.19227	11	CL	LEVEL4	44	78.4	
INESTRING (-72.333984375 -36.527262572333214	2020-03-23 08:00:00	61088	San Nicolás	61088	San Nicolás	0.00000	11	CL	LEVEL4	80	58.6	
INESTRING (-71.45507812500001 -33.9433287203	2020-03-23 08:00:00	61219	San Pedro	61219	San Pedro	16.22905	11	CL	LEVEL4	21	14.6	
INESTRING (-71.279296875 -33.79737760634471,	2020-03-23 08:00:00	61215	Melipilla	61219	San Pedro	16.24293	11	CL	LEVEL4	25	15.6	
INESTRING (-71.279296875 -34.23448100875922,	2020-03-23 08:00:00	60980	Las Cabras	61219	San Pedro	32.37471	11	CL	LEVEL4	15	11.4	
INESTRING (-71.455078125 -34.08903002544869,	2020-03-23 08:00:00	60980	Las Cabras	61219	San Pedro	16.20127	11	CL	LEVEL4	15	14.4	
INESTRING (-71.455078125 -34.52462999448535,	2020-03-23 08:00:00	61002	Palmilla	61006	Santa Cruz	16.08960	11	CL	LEVEL4	52	56.(
INESTRING (-71.279296875 -34.52462999448535,	2020-03-23 08:00:00	61002	Palmilla	61006	Santa Cruz	22.75414	11	CL	LEVEL4	19	19.6	
INESTRING (-70.927734375 -30.675685824903944	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	33.62182	11	CL	LEVEL3	14	16.4	
INESTRING (-70.224609375 -18.56292709925129,	2020-03-23 08:00:00	60894	Arica	60894	Arica	0.00000	11	CL	LEVEL3	8740	7168.6	
INESTRING (-71.806640625 -39.300266145437504	2020-03-23 08:00:00	61105	Pucón	61105	Pucón	15.12543	11	CL	LEVEL4	40	109.2	
INESTRING (-70.22460937500001 -18.3962099511	2020-03-23 08:00:00	60894	Arica	60894	Arica	0.00000	11	CL	LEVEL3	13222	11599.(
INESTRING (-71.103515625 -30.675685824903944	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	16.82405	11	CL	LEVEL3	26	38.2	
INESTRING (-70.751953125 -30.372845781329808	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	0.00000	11	CL	LEVEL3	17	19.(
INESTRING (-71.103515625 -30.524383776418823	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	16.82405	11	CL	LEVEL3	28	30.(
INESTRING (-71.630859375 -30.977579345438294	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	0.00000	11	CL	LEVEL3	18	13.(
INESTRING (-71.279296875 -30.524383776418823	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	23.79280	11	CL	LEVEL3	12	20.4	
INESTRING (-71.982421875 -39.300266145437504	2020-03-23 08:00:00	61105	Pucón	61105	Pucón	15.12543	11	CL	LEVEL4	20	44.2	
INESTRING (-71.806640625 -39.16410803901017,	2020-03-23 08:00:00	61105	Pucón	61105	Pucón	21.41136	11	CL	LEVEL4	11	40.2	
INESTRING (-70.927734375 -30.675685824903944	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	0.00000	11	CL	LEVEL3	448	422.2	
INESTRING (-71.279296875 -30.675685824903944	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	16.82405	11	CL	LEVEL3	91	162.(
INESTRING (-70.22460937500001 -18.3962099511	2020-03-23 08:00:00	60894	Arica	60894	Arica	26.21689	11	CL	LEVEL3	11	13.(
INESTRING (-70.927734375 -30.675685824903944	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	16.79773	11	CL	LEVEL3	19	23.2	
INESTRING (-71.455078125 -30.675685824903944	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	16.81092	11	CL	LEVEL3	29	39.(
INESTRING (-70.048828125 -18.56292709925129,	2020-03-23 08:00:00	60894	Arica	60894	Arica	0.00000	11	CL	LEVEL3	212	175.2	
INESTRING (-71.27929687500001 -30.8267512407	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	0.00000	11	CL	LEVEL3	460	415.4	
INESTRING (-71.806640625 -39.16410803901017,	2020-03-23 08:00:00	61105	Pucón	61105	Pucón	0.00000	11	CL	LEVEL4	149	293.2	
INESTRING (-71.279296875 -30.675685824903944	2020-03-23 08:00:00	60853	Limarí	60853	Limarí	16.81092	11	CL	LEVEL3	15	16.6	
INESTRING (_71 082421875 _35 10100234351262	2020-03-23 08·00·00	60864	Talca	60864	Talca	0 00000	11	CI	I F\/FI 2	226	241 (
Showing 1 to 29 of 72,973 entries, 23 total columns												

offd4mobility - main - RStudio													
🔁 📲 📲 📲 🚔 🖌 📾 🕹 👘 Go to file/function 🛛 👼 📲 🖌 Addins 🗸 🔞													
mov													
	▼ Filter							_	_	_			
untry ÷ level		n hacalina 🍦	n difference 🗘	nercent change	is statistically significant	7 50070	start lat 🍦	start lon 🌻	end lat 🍦	and lon 🗘	start guadkey	and guadkey	data time?
	4 100	11_Daseinie 83.6	16 <i>4</i>	10 3853428	is_statistically_significant	0.828008307	_42 17310	_72 37317	_42 17310	_72 37317	21201102102	21201102102	2020-03-23 04:00:00
	4 100 4 44	78.4	_34.4	_43 3249370	0	-2 001827814	-36 61352	_72 13230	-36 47571	-72.37317	21023300101	21023122323	2020-03-23 04:00:00
	4 80	58.6	21.4	35 9060403	0	0 997454941	-36 47571	-72 23225	-36 47571	-72 23225	21023300101	21023122323	2020-03-23 04:00:00
LEVEL	4 21	14.6	6.4	41.0256410	0	1.034142977	-33.93139	-71.45261	-33.93139	-71.45261	21023103203	21023103203	2020-03-23 04:00:00
LEVEL	4 25	15.6	9.4	56.6265060	0	1.766992214	-33.74376	-71.19374	-33.93139	-71.45261	21023103210	21023103203	2020-03-23 04:00:00
LEVEL	4 15	11.4	3.6	29.0322581	0	1.213559752	-34.16498	-71.33093	-33.93139	-71.45261	21023103232	21023103203	2020-03-23 04:00:00
LEVEL	4 15	14.4	0.6	3.8961039	0	0.526234812	-34.16498	-71.33093	-33.93139	-71.45261	21023103232	21023103203	2020-03-23 04:00:00
LEVEL	4 52	56.0	-4.0	-7.0175439	0	-0.399003734	-34.52852	-71.35123	-34.64358	-71.40013	21023121012	21023121021	2020-03-23 04:00:00
LEVEL	4 19	19.6	-0.6	-2.9126214	0	-0.273861279	-34.52852	-71.35123	-34.64358	-71.40013	21023121012	21023121021	2020-03-23 04:00:00
LEVEL	3 14	16.4	-2.4	-13.7931034	0	-0.747812343	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	3 8740	7168.6	1571.4	21.9175407	0	4.000000000	-18.71308	-69.85541	-18.71308	-69.85541	21003312210	21003312210	2020-03-23 04:00:00
LEVEL	4 40	109.2	-69.2	-62.7949183	0	-3.220521162	-39.27581	-71.78953	-39.27581	-71.78953	21023320133	21023320133	2020-03-23 04:00:00
LEVEL	3 13222	11599.0	1623.0	13.9913793	0	4.000000000	-18.71308	-69.85541	-18.71308	-69.85541	21003312210	21003312210	2020-03-23 04:00:00
LEVEL	3 26	38.2	-12.2	-31.1224490	0	-1.936264028	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	3 17	19.6	-2.6	-12.6213592	0	-0.453979692	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	3 28	30.6	-2.6	-8.2278481	0	-0.390635299	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	3 18	13.0	5.0	35.7142857	0	1.250000000	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	3 12	20.4	-8.4	-39.2523364	0	-1.434274331	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	4 20	44.2	-24.2	-53.5398230	0	-2.693882187	-39.27581	-71.78953	-39.27581	-71.78953	21023320133	21023320133	2020-03-23 04:00:00
LEVEL	4 11	40.2	-29.2	-70.8737864	0	-3.602468290	-39.27581	-71.78953	-39.27581	-71.78953	21023320133	21023320133	2020-03-23 04:00:00
LEVEL	3 448	422.2	25.8	6.0964083	0	1.415532653	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	3 91	162.0	-71.0	-43.5582822	0	-2.003380900	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	3 11	13.0	-2.0	-14.2857143	0	-0.816496581	-18.71308	-69.85541	-18.71308	-69.85541	21003312210	21003312210	2020-03-23 04:00:00
LEVEL	3 19	23.2	-4.2	-17.3553719	0	-0.881528508	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	3 29	39.6	-10.6	-26.1083744	0	-1.649418417	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	3 212	175.2	36.8	20.8853575	0	2.407234852	-18.71308	-69.85541	-18.71308	-69.85541	21003312210	21003312210	2020-03-23 04:00:00
LEVEL	3 460	415.4	44.6	10.7108549	0	1.448311514	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
LEVEL	4 149	293.2	-144.2	-49.0142760	0	-0.772369723	-39.27581	-71.78953	-39.27581	-71.78953	21023320133	21023320133	2020-03-23 04:00:00
LEVEL	3 15	16.6	-1.6	-9.0909091	0	-0.447213595	-30.78677	-70.96189	-30.78677	-70.96189	21021323100	21021323100	2020-03-23 04:00:00
I FV/FI	2 226	241 0 5 23 total colum	_5 A	_2 0661157	^	-0 002332203	_35 50740	_71 42570	_35 50740	_71 42570	21023123001	21023123001	2020-03-23 04.00.00

Console

Limitation

- Facebook coverage (low penetration of Facebook in some locations, age biases...)
- Location setting on
- Lack on information about users
- Lower representation of small areas
- Set baseline period
- Datasets discontinued 90 days after the last data update

Checking Installation Status

Software

